
Introduction to Mobile
Security Testing

Approaches and Examples using OWASP MSTG

OWASP German Day 20.11.2018

Carlos Holguera

$ whoami

 Security Engineer working at ESCRYPT GmbH
since 2012

 Area of expertise:
– Mobile & Automotive Security Testing

– Security Testing Automation

Carlos Holguera [olˈɣera]

@grepharder

Index

1 Why?
2 From the Standard to the Guide
3 Vulnerability Analysis
4 Information Gathering
6 Penetration Testing
7 Final Demos

1 Why?

Why?

 Trustworthy sources?

 Right Methodology?

 Latest Techniques?

MASVS is the WHAT

MSTG is the HOW

Online videos,
articles,

trainings ??

https://github.com/OWASP/owasp-mstg/tree/master/Checklists

2 From the Standard
to the Guide

From the Standard to the Guide

From the Standard to the Guide
OWASP Mobile Application Security Verification Standard

Read it on GitBookOpen on GitHub

https://github.com/OWASP/owasp-masvs
https://mobile-security.gitbook.io/masvs/
https://github.com/OWASP/owasp-masvs
https://github.com/OWASP/owasp-mstg/tree/master/Checklists

From the Standard to the Guide
OWASP Mobile Application Security Verification Standard

How? MSTG

OS agnostic

https://mobile-security.gitbook.io/masvs/0x10-v5-network_communication_requirements
https://github.com/OWASP/owasp-mstg/tree/master/Checklists
https://github.com/OWASP/owasp-mstg/tree/master/Checklists

From the Standard to the Guide
OWASP Mobile Application Security Verification Standard

Get from GitHub
fork & customize

dep. on target

https://github.com/OWASP/owasp-mstg/tree/master/Checklists
https://github.com/OWASP/owasp-mstg/tree/master/Checklists
https://github.com/OWASP/owasp-mstg/tree/master/Checklists

From the Standard to the Guide
OWASP Mobile Security Testing Guide

Read it on GitBookOpen on GitHub

https://mobile-security.gitbook.io/mobile-security-testing-guide/
https://github.com/OWASP/owasp-mstg
https://github.com/OWASP/owasp-mstg/tree/master/Checklists
https://github.com/OWASP/owasp-mstg/tree/master/Checklists

From the Standard to the Guide
OWASP Mobile Security Testing Guide

MASVS Refs. on
each chapter

GitHub Search or clone & grep

https://github.com/OWASP/owasp-mstg/tree/master/Checklists
https://github.com/OWASP/owasp-mstg/tree/master/Checklists

3 Vulnerability Analysis

Vulnerability Analysis

Static Analysis (SAST)

Manual Code Review

 grep& line-by-line examination

 expert code reviewer proficient in both
language and frameworks

Automatic Code Analysis

 Speed up the review
 Predefined set of rules or industry best

practices
 False positives! A security professional

must always review the results.
 False negatives! Even worse …

Dynamic Analysis (DAST)

Testing and evaluation of apps

 Real-time execution
 Manual
 Automatic

Examples of checks

 disclosure of data in transit
 authentication and authorization issues
 server configuration errors.

Recommendation: SAST + DAST + security
professional

Vulnerability Analysis

* OWASP, Mobile Security Testing Guide, 2018 (0x05d-Testing-Data-Storage.html)
What to verify & how.

Incl. References to
MASVS Requirements

Based on MASVS

https://mobile-security.gitbook.io/mobile-security-testing-guide/android-testing-guide/0x05d-testing-data-storage
https://github.com/OWASP/owasp-mstg/tree/master/Checklists
https://github.com/OWASP/owasp-mstg/tree/master/Checklists

The MSTG Hacking

Playground App

Vulnerability Analysis
Demo App

Open on GitHub

https://github.com/OWASP/MSTG-Hacking-Playground

Example: Android original source code

Vulnerability Analysis
Manual Code Review

Example: Android decompiled source code

Vulnerability Analysis
Manual Code Review

Vulnerability Analysis
Manual Code Review

Example: iOS original source code

* OWASP iGoat A Learning Tool for iOS App Pentesting and Security, 2018 (iGoat)

https://github.com/OWASP/igoat/blob/9a551fa4666018f4aef7235e2a1c559a5a7b2309/iGoat/iGoat/Key Chain/KeychainExerciseViewController.m#L35
https://github.com/OWASP/igoat

Vulnerability Analysis
Manual Code Review

Example: iOS disassembled “source code”

Vulnerability Analysis
Automatic Code Analysis

Example: Static Analyzer

must be always evaluated
by a professional

https://github.com/OWASP/owasp-mstg/tree/master/Checklists

4 Information Gathering

Information Gathering

Information Gathering

Identifies

 General Information

 Sensitive Information

… on the target that is publically available. E.g.

about the OS and its APIs

Evaluates the risk by understanding

 Existing Vulnerabilities
 Existing Exploits

… especially from third party software.

Information Gathering

* OWASP, Mobile Security Testing Guide, 2018 (0x05a-Platform-Overview.html)

https://sushi2k.gitbooks.io/the-owasp-mobile-security-testing-guide/content/0x05a-Platform-Overview.html
https://mobile-security.gitbook.io/mobile-security-testing-guide/android-testing-guide/0x05a-Platform-Overview.html

Information Gathering

Example: Open OMTG_DATAST_011_Memory.java and observe the decryptString implementation.

https://github.com/OWASP/MSTG-Hacking-Playground/blob/master/Android/OMTG-Android-App/app/src/main/java/sg/vp/owasp_mobile/OMTG_Android/OMTG_DATAST_011_Memory.java#L34

Information Gathering

Let me google

that for you…

Information Gathering

Got all original crypto code
inclusive crypto params.

https://github.com/OWASP/owasp-mstg/tree/master/Checklists

5 Penetration Testing

Penetration Testing

Preparation

Coordination with the client

 Define scope / focus

 Request source code

 Release and debug apps

 Understand customer worries

Identifying Sensitive Data

 at rest: file
 in use: address space

 in transit: tx to endpoint, IPC

Intelligence Gathering

Environmental info

 Goals and intended use (e.g. Flashlight)

 What if compromised?

Architectural Info

 Runtime protections (jailbreak,

emulator..?)
 Which OS (old versions?)

 Network Security
 Secure Storage (what, why, how?)

Penetration Testing

Mapping

Based on all previous information

 UNDERSTAND the target

 LIST potential vulnerabilities
 DRAW sensitive data flow

 DESIGN a test plan, use MASVS

Complement with automated scanning
and manually exploring the app

Exploitation

 Exploit the vulnerabilities identified
during the previous phase

 Use the MSTG
 Find the true positives

Reporting

 Essential to the client
 Not so fun?

 It makes you the bad guy
 Security not integrated early enough in

the SDLC?

* OWASP, Mobile Security Testing Guide, 2018 (0x04b-Mobile-App-Security-Testing.html)

Penetration Testing

https://sushi2k.gitbooks.io/the-owasp-mobile-security-testing-guide/content/0x04b-Mobile-App-Security-Testing.html
https://mobile-security.gitbook.io/mobile-security-testing-guide/android-testing-guide/0x04b-Mobile-App-Security-Testing.html

Penetration Testing is conducted in four phases*

* NIST, Technical Guide to Information Security Testing and Assessment, 2008

Penetration Testing

However

 Multiple attack vectors
 Multiple steps
 Different combinations give different full attack vectors

So penetration testing usually looks more like this …

Penetration Testing

Download the app

Read the
logs

Dex to jar

What do you want?

Inspect the code

The plain text?

get
smali

Replicate crypto operations in java

debug

unpack it

Patch smali

hooking

decompile

It’s android, be happy!

The plain text

Re-package

Re-sign

Re-install

javac

run

Find stuff: keys, cipherText,
classes

Make the app
debuggable

google
logcat

Penetration Testing
Demo Spoiler

Penetration Testing
Techniques

decompilation

disassembly

code injection

binary patching
debugging

dynamic binary
instrumentation

fuzzing

traffic
dump

traffic interception

man-in-the-middle

method tracing tampering

hooking

root detection

Penetration Testing

One for Android,
one for iOS. All happy

https://github.com/OWASP/owasp-mstg/tree/master/Checklists
https://github.com/OWASP/owasp-mstg/tree/master/Checklists

* OWASP, Mobile Security Testing Guide, 2018 (0x05c-Reverse-Engineering-and-Tampering.html)

Penetration Testing

https://sushi2k.gitbooks.io/the-owasp-mobile-security-testing-guide/content/0x05c-Reverse-Engineering-and-Tampering.html#reverse-engineering
https://mobile-security.gitbook.io/mobile-security-testing-guide/android-testing-guide/0x05c-Reverse-Engineering-and-Tampering.html

* OWASP, Mobile Security Testing Guide, 2018 (0x05c-Reverse-Engineering-and-Tampering.html)

Penetration Testing

https://mobile-security.gitbook.io/mobile-security-testing-guide/android-testing-guide/0x05c-Reverse-Engineering-and-Tampering.html#tampering-and-runtime-instrumentation
https://sushi2k.gitbooks.io/the-owasp-mobile-security-testing-guide/content/0x05c-Reverse-Engineering-and-Tampering.html#tampering-and-runtime-instrumentation

Penetration Testing
Example Scenario Automotive-Mobile Testing

Bluetooth

Mobile
Apps

CAN

04 FX XX XX XX XF FF

03 2X XX XX XX X5 55

03 2X XX XX XX X5 55

04 FX XX XX XX XF FF

6 Demo 1 Mobile Penetration
Testing

Let‘s decrypt that encrypted string!

Demo 1
App: MSTG-Hacking-Playground (011_MEMORY)

https://github.com/OWASP/owasp-mstg/tree/master/Checklists
https://github.com/OWASP/owasp-mstg/tree/master/Checklists

Demo 1

Download the app

Read the
logs

Dex to jar

What do you want?

Inspect the code

The plain text?

get
smali

Replicate crypto operations in java

debug

unpack it

Patch smali

hooking

decompile

It’s android, be happy!

The plain text

Re-package

Re-sign

Re-install

javac

run

Find stuff: keys, cipherText,
classes

Make the app
debuggable

google
logcat

Demo 1

Download the app

Dex to jar

What do you want?

Inspect the code

The plain text?

unpack it

hooking

decompile

It’s android, be happy!

The plain text

Find stuff: keys, cipherText,
classes

google

Demo 1

Demo 1

6 Demo 2 Mobile Penetration
Testing

Let‘s get the crypto keys!

Demo 2
App: MSTG-Hacking-Playground (001_KEYSTORE)

Download the app

Dex to jar

What do you want?

Inspect the code

The crypto keys

get
smali

debug

unpack it

Patch smali

hooking

decompile

It’s android, be happy!

The crypto keys

Re-package

Re-sign

Re-install

Find stuff: keys, classes

Make the app
debuggable

google

Demo 2

Download the app

Dex to jar

What do you want?

Inspect the code

The crypto keys

unpack it

hooking

decompile

It’s android, be happy!

The crypto keys

Find stuff: keys, classes

google

Demo 2

Demo 2

Demo 2

Demo 2

https://tools.ietf.org/html/rfc2313#section-7.2

Takeaways

Read the MSTG

Use the MASVS

Play with Crackmes

grepharder

 Learn

 Learn

Contribute!

Have fun :)

https://rada.re/
https://www.frida.re/

References
RTFMSTG

 OWASP Mobile Security Testing Guide

https://mobile-security.gitbook.io/mobile-security-testing-guide
https://github.com/OWASP/owasp-mstg

 OWASP Mobile Application Security Verification Standard

https://mobile-security.gitbook.io/masvs/
https://github.com/OWASP/owasp-masvs

 OWASP iGoat - A Learning Tool for iOS App Pentesting and Security

https://github.com/OWASP/igoat

 OWASP MSTG-Hacking-Playground Android App

https://github.com/OWASP/MSTG-Hacking-Playground

 OWASP MSTG Crackmes

https://github.com/OWASP/owasp-mstg/tree/master/Crackmes

References

Thank you, any questions?

